Ford Pick-Ups/Expedition/Navigator 1997-2000

General Information


The automobile charging system provides electrical power for operation of the vehicle's ignition and starting systems and all the electrical accessories. The battery serves as an electrical surge or storage tank, storing (in chemical form) the energy originally produced by the engine driven alternator. The system also provides a means of regulating generator output to protect the battery from being overcharged and to avoid excessive voltage to the accessories.

The storage battery is a chemical device incorporating parallel lead plates in a tank containing a sulfuric acid/water solution. Adjacent plates are slightly dissimilar, and the chemical reaction of the 2 dissimilar plates produces electrical energy when the battery is connected to a load such as the starter motor. The chemical reaction is reversible, so that when the generator is producing a voltage (electrical pressure) greater than that produced by the battery, electricity is forced into the battery, and the battery is returned to its fully charged state.

The vehicle's alternator is driven mechanically, by a belt(s) that is driven by the engine crankshaft. In an alternator, the field rotates while all the current produced passes only through the stator winding. The brushes bear against continuous slip rings rather than a commutator. This causes the current produced to periodically reverse the direction of its flow creating alternating current (A/C ). Diodes (electrical one-way switches) block the flow of current from traveling in the wrong direction. A series of diodes is wired together to permit the alternating flow of the stator to be converted to a pulsating, but unidirectional flow at the alternator output. The alternator's field is wired in series with the voltage regulator.

The regulator consists of several circuits. Each circuit has a core, or magnetic coil of wire, which operates a switch. Each switch is connected to ground through one or more resistors. The coil of wire responds directly to system voltage. When the voltage reaches the required level, the magnetic field created by the winding of wire closes the switch and inserts a resistance into the generator field circuit, thus reducing the output. The contacts of the switch cycle open and close many times each second to precisely control voltage.