GM Cavalier/Sunbird/Skyhawk/Firenza 1982-1994

General Information


The computer control module (ECM/PCM) is required to maintain the exhaust emissions at acceptable levels. The module is a small, solid state computer which receives signals from many sources and sensors; it uses these data to make judgments about operating conditions and then control output signals to the fuel and emission systems to match the current requirements.

Inputs are received from many sources to form a complete picture of engine operating conditions. Some inputs are simply yes or no messages, such as that from the Park/Neutral switch; the vehicle is either in gear or in Park/Neutral; there are no other choices. Other data is sent in quantitative input, such as engine RPM, coolant temperature and throttle position. The computer control module is pre-programmed to recognize acceptable ranges or combinations of signals and control the outputs to control emissions while providing good driveability and economy. The ECM/PCM also monitors some output circuits, making sure that the components function as commanded. For proper engine operation, it is essential that all input and output components function properly and communicate properly with the computer control module.

Since the control module is programmed to recognize the presence and value of electrical inputs, it will also note the lack of a signal or a radical change in values. It will, for example, react to the loss of signal from the vehicle speed sensor or note that engine coolant temperature has risen beyond acceptable (programmed) limits. Once a fault is recognized, a numeric code is assigned and held in memory. The dashboard warning lamp: CHECK ENGINE or SERVICE ENGINE SOON (SES) will illuminate to advise the operator that the system has detected a fault. This lamp is also known as the Malfunction Indicator Lamp (MIL).

More than one code may be stored. Although not every engine uses every code, possible codes range from 12 to over 100. Additionally, the same code may carry different meanings relative to each engine or engine family.

In the event of an computer control module failure, the system will default to a pre-programmed set of values. These are compromise values which allow the engine to operate, although possibly at reduced efficiency. This is variously known as the default, limp-in or back-up mode. Driveability is almost always affected when the ECM/PCM enters this mode.


The computer control module can compensate for minor variations within the fuel system through the block learn and fuel integrator systems. The fuel integrator monitors the oxygen sensor output voltage, adding or subtracting fuel to drive the mixture rich or lean as needed to reach the ideal air fuel ratio of 14.7:1. The integrator values may be read with a scan tool; the display will range from 0-255 and should center on 128 if the oxygen sensor is seeing a 14.7:1 mixture.

The temporary nature of the integrator's control is expanded by the block learn function. The name is derived from the fact that the entire engine operating range (load vs. rpm) is divided into 16 sections or blocks. Within each memory block is stored the correct fuel delivery value for that combination of load and engine speed. Once the operating range enters a certain block, that stored value controls the fuel delivery unless the integrator steps in to change it. If changes are made by the integrator, the new value is memorized and stored within the block. As the block learn makes the correction, the integrator correction will be reduced until the integrator returns to 128; the block learn then controls the fuel delivery with the new value.

The next time the engine operates within the block's range, the new value will be used. The block learn data can also be read by a scan tool; the range is the same as the integrator and should also center on 128. In this way, the systems can compensate for engine wear, small air or vacuum leaks or reduced combustion.

Any time the battery is disconnected, the block learn values are lost and must be relearned by the ECM. This loss of corrected values may be noticed as a significant change in driveability. To reteach the system, make certain the engine is fully warmed up. Drive the vehicle at part throttle using moderate acceleration and idle until normal performance is felt.


The primary function of the dash warning lamp is to advise the operator and that a fault has been detected, and, in most cases, a code stored. Under normal conditions, the dash warning lamp will illuminate when the ignition is turned ON . Once the engine is started and running, the computer control module will perform a system check and extinguish the warning lamp if no fault is found.

Additionally, the dash warning lamp can be used to retrieve stored codes after the system is placed in the Diagnostic Mode. Codes are transmitted as a series of flashes with short or long pauses. When the system is placed in the Field Service Mode, the dash lamp will indicate open loop or closed loop function to the technician.