Mitsubishi Car 1999-05

Understanding and Troubleshooting Electrical Systems


When diagnosing a specific problem, organized troubleshooting is a must. The complexity of a modern automotive vehicle demands that you approach any problem in a logical, organized manner. There are certain troubleshooting techniques, however, which are standard:

Establish when the problem occurs. Does the problem appear only under certain conditions- Were there any noises, odors or other unusual symptoms- Isolate the problem area. To do this, make some simple tests and observations, then eliminate the systems that are working properly. Check for obvious problems, such as broken wires and loose or dirty connections. Always check the obvious before assuming something complicated is the cause.
Test for problems systematically to determine the cause once the problem area is isolated. Are all the components functioning properly- Is there power going to electrical switches and motors. Performing careful, systematic checks will often turn up most causes on the first inspection, without wasting time checking components that have little or no relationship to the problem.
Test all repairs after the work is done to make sure that the problem is fixed. Some causes can be traced to more than one component, so a careful verification of repair work is important in order to pick up additional malfunctions that may cause a problem to reappear or a different problem to arise. A blown fuse, for example, is a simple problem that may require more than another fuse to repair. If you don't look for a problem that caused a fuse to blow, a shorted wire (for example) may go undetected.

Experience has shown that most problems tend to be the result of a fairly simple and obvious cause, such as loose or corroded connectors, bad grounds or damaged wire insulation which causes a short. This makes careful visual inspection of components during testing essential to quick and accurate troubleshooting.

Basic Electrical Theory

For any 12 volt, negative ground, electrical system to operate, the electricity must travel in a complete circuit. This simply means that current (power) from the positive (+) terminal of the battery must eventually return to the negative (-) terminal of the battery. Along the way, this current will travel through wires, fuses, switches and components. If, for any reason, the flow of current through the circuit is interrupted, the component fed by that circuit will cease to function properly.

Perhaps the easiest way to visualize a circuit is to think of connecting a light bulb (with two wires attached to it) to the battery-one wire attached to the negative (-) terminal of the battery and the other wire to the positive (+) terminal. With the two wires touching the battery terminals, the circuit would be complete and the light bulb would illuminate. Electricity would follow a path from the battery to the bulb and back to the battery. It's easy to see that with longer wires on our light bulb, it could be mounted anywhere. Further, one wire could be fitted with a switch so that the light could be turned on and off.

Click image to see an enlarged view

Fig. This example illustrates a simple circuit. When the switch is closed, power from the positive (+) battery terminal flows through the fuse and the switch, and then to the light bulb. The light illuminates and the circuit is completed through the ground wire back to the negative (-) battery terminal. In reality, the two ground points shown in the illustration are attached to the metal frame of the vehicle, which completes the circuit back to the battery

The normal automotive circuit differs from this simple example in two ways. First, instead of having a return wire from the bulb to the battery, the current travels through the frame of the vehicle. Since the negative (-) battery cable is attached to the frame (made of electrically conductive metal), the frame of the vehicle can serve as a ground wire to complete the circuit. Secondly, most automotive circuits contain multiple components which receive power from a single circuit. This lessens the amount of wire needed to power components on the vehicle.

Basic Circuits

Two types of grounds are used in automotive electric circuits. Direct ground components are grounded to the frame through their mounting points. All other components use some sort of ground wire which is attached to the frame or chassis of the vehicle. The electrical current runs through the chassis of the vehicle and returns to the battery through the ground (-) cable; if you look, you'll see that the battery ground cable connects between the battery and the frame or chassis of the vehicle.

It should be noted that a good percentage of electrical problems can be traced to bad grounds.


Every electrical circuit must include a "load" (something to use the electricity coming from the source). Without this load, the battery would attempt to deliver its entire power supply from one pole to another. This is called a "short circuit." All this electricity would take a short cut to ground and cause a great amount of damage to other components in the circuit by developing a tremendous amount of heat. This condition could develop sufficient heat to melt the insulation on all the surrounding wires and reduce a multiple wire cable to a lump of plastic and copper.

How Electricity Works: The Water Analogy

Electricity is the flow of electrons-the subatomic particles that constitute the outer shell of an atom. Electrons spin in an orbit around the center core of an atom. The center core is comprised of protons (positive charge) and neutrons (neutral charge). Electrons have a negative charge and balance out the positive charge of the protons. When an outside force causes the number of electrons to unbalance the charge of the protons, the electrons will split off the atom and look for another atom to balance out. If this imbalance is kept up, electrons will continue to move and an electrical flow will exist.

Many people have been taught electrical theory using an analogy with water. In a comparison with water flowing through a pipe, the electrons would be the water and the wire is the pipe.

The flow of electricity can be measured much like the flow of water through a pipe. The unit of measurement used is amperes, frequently abbreviated as amps (a). You can compare amperage to the volume of water flowing through a pipe. When connected to a circuit, an ammeter will measure the actual amount of current flowing through the circuit. When relatively few electrons flow through a circuit, the amperage is low. When many electrons flow, the amperage is high.

Water pressure is measured in units such as pounds per square inch (psi); The electrical pressure is measured in units called volts (v). When a voltmeter is connected to a circuit, it is measuring the electrical pressure.

The actual flow of electricity depends not only on voltage and amperage, but also on the resistance of the circuit. The higher the resistance, the higher the force necessary to push the current through the circuit. The standard unit for measuring resistance is an ohm. Resistance in a circuit varies depending on the amount and type of components used in the circuit. The main factors which determine resistance are:

Material-some materials have more resistance than others. Those with high resistance are said to be insulators. Rubber materials (or rubber-like plastics) are some of the most common insulators used in vehicles as they have a very high resistance to electricity. Very low resistance materials are said to be conductors. Copper wire is among the best conductors. Silver is actually a superior conductor to copper and is used in some relay contacts, but its high cost prohibits its use as common wiring. Most automotive wiring is made of copper.
Size-the larger the wire size being used, the less resistance the wire will have. This is why components which use large amounts of electricity usually have large wires supplying current to them.
Length-for a given thickness of wire, the longer the wire, the greater the resistance. The shorter the wire, the less the resistance. When determining the proper wire for a circuit, both size and length must be considered to design a circuit that can handle the current needs of the component.
Temperature-with many materials, the higher the temperature, the greater the resistance (positive temperature coefficient). Some materials exhibit the opposite trait of lower resistance with higher temperatures (negative temperature coefficient). These principles are used in many of the sensors on the engine.

Ohm's Law

There is a direct relationship between current, voltage and resistance. The relationship between current, voltage and resistance can be summed up by a statement known as Ohm's law.

Voltage (E) is equal to amperage (I) times resistance (R): E=I x R

Other forms of the formula are R=E/I and I=E/R

In each of these formulas, E is the voltage in volts, I is the current in amps and R is the resistance in ohms. The basic point to remember is that as the resistance of a circuit goes up, the amount of current that flows in the circuit will go down, if voltage remains the same.

The amount of work that the electricity can perform is expressed as power. The unit of power is the watt (w). The relationship between power, voltage and current is expressed as:

Power (w) is equal to amperage (I) times voltage (E): W=I x E

This is only true for direct current (DC) circuits; The alternating current formula is a tad different, but since the electrical circuits in most vehicles are DC type, we need not get into AC circuit theory.

Electrical Components


Three types of connectors are commonly used in automotive applications-weatherproof, molded and hard shell.

Click image to see an enlarged view

Fig. Hard shell (left) and weatherproof (right) connectors have replaceable terminals

Weatherproof-these connectors are most commonly used where the connector is exposed to the elements. Terminals are protected against moisture and dirt by sealing rings which provide a weathertight seal. All repairs require the use of a special terminal and the tool required to service it. Unlike standard blade type terminals, these weatherproof terminals cannot be straightened once they are bent. Make certain that the connectors are properly seated and all of the sealing rings are in place when connecting leads.
Molded-these connectors require complete replacement of the connector if found to be defective. This means splicing a new connector assembly into the harness. All splices should be soldered to insure proper contact. Use care when probing the connections or replacing terminals in them, as it is possible to create a short circuit between opposite terminals. If this happens to the wrong terminal pair, it is possible to damage certain components. Always use jumper wires between connectors for circuit checking and NEVER probe through weatherproof seals.
Hard Shell-unlike molded connectors, the terminal contacts in hard-shell connectors can be replaced. Replacement usually involves the use of a special terminal removal tool that depresses the locking tangs (barbs) on the connector terminal and allows the connector to be removed from the rear of the shell. The connector shell should be replaced if it shows any evidence of burning, melting, cracks, or breaks. Replace individual terminals that are burnt, corroded, distorted or loose.

Click image to see an enlarged view

Fig. Weatherproof connectors are most commonly used in the engine compartment or where the connector is exposed to the elements

Power Source

Power is supplied to the vehicle by two devices: The battery and the alternator. The battery supplies electrical power during starting or during periods when the current demand of the vehicle's electrical system exceeds the output capacity of the alternator. The alternator supplies electrical current when the engine is running. Just not does the alternator supply the current needs of the vehicle, but it recharges the battery.

The Alternator

On some vehicles there isn't an alternator, but a generator. The difference is that an alternator supplies alternating current which is then changed to direct current for use on the vehicle, while a generator produces direct current. Alternators tend to be more efficient and that is why they are used.

Alternators and generators are devices that consist of coils of wires wound together making big electromagnets. One group of coils spins within another set and the interaction of the magnetic fields causes a current to flow. This current is then drawn off the coils and fed into the vehicles electrical system.

The Battery

In most modern vehicles, the battery is a lead/acid electrochemical device consisting of six 2 volt subsections (cells) connected in series, so that the unit is capable of producing approximately 12 volts of electrical pressure. Each subsection consists of a series of positive and negative plates held a short distance apart in a solution of sulfuric acid and water.

The two types of plates are of dissimilar metals. This sets up a chemical reaction, and it is this reaction which produces current flow from the battery when its positive and negative terminals are connected to an electrical load. The power removed from the battery is replaced by the alternator, restoring the battery to its original chemical state.

Protective Devices

It is possible for large surges of current to pass through the electrical system of your vehicle. If this surge of current were to reach the load in the circuit, the surge could burn it out or severely damage it. It can also overload the wiring, causing the harness to get hot and melt the insulation. To prevent this, fuses, circuit breakers and/or fusible links are connected into the supply wires of the electrical system. These items are nothing more than a built-in weak spot in the system. When an abnormal amount of current flows through the system, these protective devices work as follows to protect the circuit:

Fuse-when an excessive electrical current passes through a fuse, the fuse "blows" (the conductor melts) and opens the circuit, preventing the passage of current.

Click image to see an enlarged view

Fig. Most vehicles use one or more fuse panels. This one is located on the driver's side kick panel

Circuit Breaker-a circuit breaker is basically a self-repairing fuse. It will open the circuit in the same fashion as a fuse, but when the surge subsides, the circuit breaker can be reset and does not need replacement.
Fusible Link-a fusible link (fuse link or main link) is a short length of special, high temperature insulated wire that acts as a fuse. When an excessive electrical current passes through a fusible link, the thin gauge wire inside the link melts, creating an intentional open to protect the circuit. To repair the circuit, the link must be replaced. Some newer type fusible links are housed in plug-in modules, which are simply replaced like a fuse, while older type fusible links must be cut and spliced if they melt. Since this link is very early in the electrical path, it's the first place to look if nothing on the vehicle works, yet the battery seems to be charged and is properly connected.

Always replace fuses, circuit breakers and fusible links with identically rated components. Under no circumstances should a component of higher or lower amperage rating be substituted.

Switches & Relays

Switches are used in electrical circuits to control the passage of current. The most common use is to open and close circuits between the battery and the various electric devices in the system. Switches are rated according to the amount of amperage they can handle. If a sufficient amperage rated switch is not used in a circuit, the switch could overload and cause damage.

Click image to see an enlarged view

Fig. The underhood fuse and relay panel usually contains fuses, relays, flashers and fusible links

Some electrical components which require a large amount of current to operate use a special switch called a relay. Since these circuits carry a large amount of current, the thickness of the wire in the circuit is also greater. If this large wire were connected from the load to the control switch, the switch would have to carry the high amperage load and the fairing or instrument panel would be twice as large to accommodate the increased size of the wiring harness. To prevent these problems, a relay is used.

Relays are composed of a coil and a set of contacts. When the coil has a current passed though it, a magnetic field is formed and this field causes the contacts to move together, completing the circuit. Most relays are normally open, preventing current from passing through the circuit, but they can take any electrical form depending on the job they are intended to do. Relays can be considered "remote control switches." They allow a smaller current to operate devices that require higher amperages. When a small current operates the coil, a larger current is allowed to pass by the contacts. Some common circuits which may use relays are the horn, headlights, starter, electric fuel pump and other high draw circuits.

Click image to see an enlarged view

Fig. Relays are composed of a coil and a switch. These two components are linked together so that when one operates, the other operates at the same time. The large wires in the circuit are connected from the battery to one side of the relay switch (B+) and from the opposite side of the relay switch to the load (component). Smaller wires are connected from the relay coil to the control switch for the circuit and from the opposite side of the relay coil to ground

Wiring & Harnesses

The average vehicle contains meters and meters of wiring, with hundreds of individual connections. To protect the many wires from damage and to keep them from becoming a confusing tangle, they are organized into bundles, enclosed in plastic or taped together and called wiring harnesses. Different harnesses serve different parts of the vehicle. Individual wires are color coded to help trace them through a harness where sections are hidden from view.

Automotive wiring or circuit conductors can be either single strand wire, multi-strand wire or printed circuitry. Single strand wire has a solid metal core and is usually used inside such components as alternators, motors, relays and other devices. Multi-strand wire has a core made of many small strands of wire twisted together into a single conductor. Most of the wiring in an automotive electrical system is made up of multi-strand wire, either as a single conductor or grouped together in a harness. All wiring is color coded on the insulator, either as a solid color or as a colored wire with an identification stripe. A printed circuit is a thin film of copper or other conductor that is printed on an insulator backing. Occasionally, a printed circuit is sandwiched between two sheets of plastic for more protection and flexibility. A complete printed circuit, consisting of conductors, insulating material and connectors for lamps or other components is called a printed circuit board. Printed circuitry is used in place of individual wires or harnesses in places where space is limited, such as behind instrument panels.

Since automotive electrical systems are very sensitive to changes in resistance, the selection of properly sized wires is critical when systems are repaired. A loose or corroded connection or a replacement wire that is too small for the circuit will add extra resistance and an additional voltage drop to the circuit.

The wire gauge number is an expression of the cross-section area of the conductor. Vehicles from countries that use the metric system will typically describe the wire size as its cross-sectional area in square millimeters. In this method, the larger the wire, the greater the number. Another common system for expressing wire size is the American Wire Gauge (AWG) system. As gauge number increases, area decreases and the wire becomes smaller. An 18 gauge wire is smaller than a 4 gauge wire. A wire with a higher gauge number will carry less current than a wire with a lower gauge number. Gauge wire size refers to the size of the strands of the conductor, not the size of the complete wire with insulator. It is possible, therefore, to have two wires of the same gauge with different diameters because one may have thicker insulation than the other.

It is essential to understand how a circuit works before trying to figure out why it doesn't. An electrical schematic shows the electrical current paths when a circuit is operating properly. Schematics break the entire electrical system down into individual circuits. In a schematic, usually no attempt is made to represent wiring and components as they physically appear on the vehicle; switches and other components are shown as simply as possible. Face views of harness connectors show the cavity or terminal locations in all multi-pin connectors to help locate test points.

Test Equipment

Pinpointing the exact cause of trouble in an electrical circuit is most times accomplished by the use of special test equipment. The following describes different types of commonly used test equipment and briefly explains how to use them in diagnosis. In addition to the information covered below, the tool manufacturer's instructions booklet (provided with the tester) should be read and clearly understood before attempting any test procedures.

Jumper Wires

Never use jumper wires made from a thinner gauge wire than the circuit being tested. If the jumper wire is of too small a gauge, it may overheat and possibly melt. Never use jumpers to bypass high resistance loads in a circuit. Bypassing resistances, in effect, creates a short circuit. This may, in turn, cause damage and fire. Jumper wires should only be used to bypass lengths of wire or to simulate switches.

Jumper wires are simple, yet extremely valuable, pieces of test equipment. They are basically test wires which are used to bypass sections of a circuit. Although jumper wires can be purchased, they are usually fabricated from lengths of standard automotive wire and whatever type of connector (alligator clip, spade connector or pin connector) that is required for the particular application being tested. In cramped, hard-to-reach areas, it is advisable to have insulated boots over the jumper wire terminals in order to prevent accidental grounding. It is also advisable to include a standard automotive fuse in any jumper wire. This is commonly referred to as a "fused jumper". By inserting an in-line fuse holder between a set of test leads, a fused jumper wire can be used for bypassing open circuits. Use a 5 amp fuse to provide protection against voltage spikes.

Jumper wires are used primarily to locate open electrical circuits, on either the ground (-) side of the circuit or on the power (+) side. If an electrical component fails to operate, connect the jumper wire between the component and a good ground. If the component operates only with the jumper installed, the ground circuit is open. If the ground circuit is good, but the component does not operate, the circuit between the power feed and component may be open. By moving the jumper wire successively back from the component toward the power source, you can isolate the area of the circuit where the open is located. When the component stops functioning, or the power is cut off, the open is in the segment of wire between the jumper and the point previously tested.

You can sometimes connect the jumper wire directly from the battery to the "hot" terminal of the component, but first make sure the component uses 12 volts in operation. Some electrical components, such as fuel injectors or sensors, are designed to operate on about 4 to 5 volts, and running 12 volts directly to these components will cause damage.


Multimeters are an extremely useful tool for troubleshooting electrical problems. They can be purchased in either analog or digital form and have a price range to suit any budget. A multimeter is a voltmeter, ammeter and ohmmeter (along with other features) combined into one instrument. It is often used when testing solid state circuits because of its high input impedance (usually 10 megaohms or more). A brief description of the multimeter main test functions follows:

Voltmeter-the voltmeter is used to measure voltage at any point in a circuit, or to measure the voltage drop across any part of a circuit. Voltmeters usually have various scales and a selector switch to allow the reading of different voltage ranges. The voltmeter has a positive and a negative lead. To avoid damage to the meter, always connect the negative lead to the negative (-) side of the circuit (to ground or nearest the ground side of the circuit) and connect the positive lead to the positive (+) side of the circuit (to the power source or the nearest power source). Note that the negative voltmeter lead will always be black and that the positive voltmeter will always be some color other than black (usually red).
Ohmmeter-the ohmmeter is designed to read resistance (measured in ohms) in a circuit or component. Most ohmmeters will have a selector switch which permits the measurement of different ranges of resistance (usually the selector switch allows the multiplication of the meter reading by 10, 100, 1,000 and 10,000). Some ohmmeters are "auto-ranging" which means the meter itself will determine which scale to use. Since the meters are powered by an internal battery, the ohmmeter can be used like a self-powered test light. When the ohmmeter is connected, current from the ohmmeter flows through the circuit or component being tested. Since the ohmmeter's internal resistance and voltage are known values, the amount of current flow through the meter depends on the resistance of the circuit or component being tested. The ohmmeter can also be used to perform a continuity test for suspected open circuits. In using the meter for making continuity checks, do not be concerned with the actual resistance readings. Zero resistance, or any ohm reading, indicates continuity in the circuit. Infinite resistance indicates an opening in the circuit. A high resistance reading where there should be none indicates a problem in the circuit. Checks for short circuits are made in the same manner as checks for open circuits, except that the circuit must be isolated from both power and normal ground. Infinite resistance indicates no continuity, while zero resistance indicates a dead short.

Never use an ohmmeter to check the resistance of a component or wire while there is voltage applied to the circuit.

Ammeter-an ammeter measures the amount of current flowing through a circuit in units called amperes or amps. At normal operating voltage, most circuits have a characteristic amount of amperes, called "current draw" which can be measured using an ammeter. By referring to a specified current draw rating, then measuring the amperes and comparing the two values, one can determine what is happening within the circuit to aid in diagnosis. An open circuit, for example, will not allow any current to flow, so the ammeter reading will be zero. A damaged component or circuit will have an increased current draw, so the reading will be high. The ammeter is always connected in series with the circuit being tested. All of the current that normally flows through the circuit must also flow through the ammeter; if there is any other path for the current to follow, the ammeter reading will not be accurate. The ammeter itself has very little resistance to current flow and, therefore, will not affect the circuit, but it will measure current draw only when the circuit is closed and electricity is flowing. Excessive current draw can blow fuses and drain the battery, while a reduced current draw can cause motors to run slowly, lights to dim and other components to not operate properly.

Test Lights

Click image to see an enlarged view

Fig. A 12 volt test light is used to detect the presence of voltage in a circuit

The test light is used to check circuits and components while electrical current is flowing through them. It is used for voltage and ground tests. To use a 12 volt test light, connect the ground clip to a good ground and probe wherever necessary with the pick. The test light will illuminate when voltage is detected. This does not necessarily mean that 12 volts (or any particular amount of voltage) is present; it only means that some voltage is present. It is advisable before using the test light to touch its ground clip and probe across the battery posts or terminals to make sure the light is operating properly.

Do not use a test light to probe electronic ignition, spark plug or coil wires. Never use a pick-type test light to probe wiring on computer controlled systems unless specifically instructed to do so. Any wire insulation that is pierced by the test light probe should be taped and sealed with silicone after testing.

Like the jumper wire, the 12 volt test light is used to isolate opens in circuits. But, whereas the jumper wire is used to bypass the open to operate the load, the 12 volt test light is used to locate the presence of voltage in a circuit. If the test light illuminates, there is power up to that point in the circuit; if the test light does not illuminate, there is an open circuit (no power). Move the test light in successive steps back toward the power source until the light in the handle illuminates. The open is between the probe and a point which was previously probed.

The self-powered test light is similar in design to the 12 volt test light, but contains a 1.5 volt penlight battery in the handle. It is most often used in place of a multimeter to check for open or short circuits when power is isolated from the circuit (continuity test).

The battery in a self-powered test light does not provide much current. A weak battery may not provide enough power to illuminate the test light even when a complete circuit is made (especially if there is high resistance in the circuit). Always make sure that the test battery is strong. To check the battery, briefly touch the ground clip to the probe; if the light glows brightly, the battery is strong enough for testing.

A self-powered test light should not be used on any computer controlled system or component. The small amount of electricity transmitted by the test light is enough to damage many electronic automotive components.


Open Circuits

Click image to see an enlarged view

Fig. The infinite reading on this multimeter indicates that the circuit is open

This test already assumes the existence of an open in the circuit and it is used to help locate the open portion.

  1. Isolate the circuit from power and ground.
  3. Connect the self-powered test light or ohmmeter ground clip to the ground side of the circuit and probe sections of the circuit sequentially.
  5. If the light is out or there is infinite resistance, the open is between the probe and the circuit ground.
  7. If the light is on or the meter shows continuity, the open is between the probe and the end of the circuit toward the power source.


Click image to see an enlarged view

Fig. Checking the resistance of a coolant temperature sensor with an ohmmeter. Reading is 1.04 kilohms

Click image to see an enlarged view

Fig. Spark plug wires can be checked for excessive resistance using an ohmmeter

Never use an ohmmeter with power applied to the circuit. The ohmmeter is designed to operate on its own power supply. The normal 12 volt electrical system voltage could damage the meter!

  1. Isolate the circuit from the vehicle's power source.
  3. Ensure that the ignition key is OFF when disconnecting any components or the battery.
  5. Where necessary, also isolate at least one side of the circuit to be checked, in order to avoid reading parallel resistances. Parallel circuit resistances will always give a lower reading than the actual resistance of either of the branches.
  7. Connect the meter leads to both sides of the circuit (wire or component) and read the actual measured ohms on the meter scale. Make sure the selector switch is set to the proper ohm scale for the circuit being tested, to avoid misreading the ohmmeter test value.

Short Circuits

Never use a self-powered test light to perform checks for opens or shorts when power is applied to the circuit under test. The test light can be damaged by outside power.

  1. Isolate the circuit from power and ground.
  3. Connect the self-powered test light or ohmmeter ground clip to a good ground and probe any easy-to-reach point in the circuit.
  5. If the light comes on or there is continuity, there is a short somewhere in the circuit.
  7. To isolate the short, probe a test point at either end of the isolated circuit (the light should be on or the meter should indicate continuity).
  9. Leave the test light probe engaged and sequentially open connectors or switches, remove parts, etc. until the light goes out or continuity is broken.
  11. When the light goes out, the short is between the last two circuit components which were opened.


This test determines voltage available from the battery and should be the first step in any electrical troubleshooting procedure after visual inspection. Many electrical problems, especially on computer controlled systems, can be caused by a low state of charge in the battery. Excessive corrosion at the battery cable terminals can cause poor contact that will prevent proper charging and full battery current flow.

  1. Set the voltmeter selector switch to the 20V position.
  3. Connect the multimeter negative lead to the battery's negative (-) post or terminal and the positive lead to the battery's positive (+) post or terminal.
  5. Turn the ignition switch ON to provide a load.
  7. A well charged battery should register over 12 volts. If the meter reads below 11.5 volts, the battery power may be insufficient to operate the electrical system properly.

Voltage Drop

Click image to see an enlarged view

Fig. This voltage drop test revealed high resistance (low voltage) in the circuit

When current flows through a load, the voltage beyond the load drops. This voltage drop is due to the resistance created by the load and also by small resistances created by corrosion at the connectors and damaged insulation on the wires. The maximum allowable voltage drop under load is critical, especially if there is more than one load in the circuit, since all voltage drops are cumulative.

  1. Set the voltmeter selector switch to the 20 volt position.
  3. Connect the multimeter negative lead to a good ground.
  5. Operate the circuit and check the voltage prior to the first component (load).
  7. There should be little or no voltage drop in the circuit prior to the first component. If a voltage drop exists, the wire or connectors in the circuit are suspect.
  9. While operating the first component in the circuit, probe the ground side of the component with the positive meter lead and observe the voltage readings. A small voltage drop should be noticed. This voltage drop is caused by the resistance of the component.
  11. Repeat the test for each component (load) down the circuit.
  13. If a large voltage drop is noticed, the preceding component, wire or connector is suspect.

Wire & Connector Repair

Almost anyone can replace damaged wires, as long as the proper tools and parts are available. Wire and terminals are available to fit almost any need. Even the specialized weatherproof, molded and hard shell connectors are now available from aftermarket suppliers.

Be sure the ends of all the wires are fitted with the proper terminal hardware and connectors. Wrapping a wire around a stud is never a permanent solution and will only cause trouble later. Replace wires one at a time to avoid confusion. Always route wires exactly the same as the factory.

If connector repair is necessary, only attempt it if you have the proper tools. Weatherproof and hard shell connectors require special tools to release the pins inside the connector. Attempting to repair these connectors with conventional hand tools will damage them.